Enumerative Invariants of Calabi-Yau Threefolds with Torsion and Noncommutative Resolutions

Sheldon Katz

University of Illinois Urbana-Champaign
Seminar in Real and Complex Geometry
Joint work with A. Klemm, T. Schimannek, and E. Sharpe arXiv:2212.08655[hep-th], and work in progress with T. Schimannek

Outline

(9) Overview

(2) Torsion

(3) Determinantal octic double solid

4 Brauer group and twisted sheaves

Determinantal Octic Double Solid

- $A(x) \in M_{8}\left(H^{0}\left(\mathbb{P}^{3}, \mathcal{O}(1)\right)\right) x \in \mathbb{P}^{3}$, generic symmetric 8×8 matrix
- $\operatorname{det}(A)=0$ deg 8 hypersurface $S \subset \mathbb{P}^{3}, 84 A_{1}$ singularities p_{i}

$$
S=\left\{x \in \mathbb{P}^{3} \mid \operatorname{rank}(A(x)) \leq 7\right\}, \quad\left\{p_{i}\right\}=\left\{x \in \mathbb{P}^{3} \mid \operatorname{rank}(A(x))=6\right\}
$$

- $Y \rightarrow \mathbb{P}^{3}$ 2-1 cover branched along S, nodal singularities over p_{i}

$$
y^{2}=\operatorname{det}(A(x)), x \in \mathbb{P}^{3}
$$

- Y determinantal octic double solid
- $\left.K_{Y} \simeq\left(K_{\mathbb{P}^{3}} \otimes \mathcal{O}_{\mathbb{P}^{3}}\left(\frac{8}{2}\right)\right)\right|_{Y}$ is trivial
- $X \rightarrow Y$ small resolution
- Exceptional \mathbb{P}^{1} 's are 2-torsion classes in $H_{2}(X, \mathbb{Z})$
- X is not Kähler
- Write $A=\sum_{i=1}^{4} A_{i} x_{i}, y \in \mathbb{C}^{8}=V$
- $Q_{i}(y)=y^{\mathrm{t}} A_{i} y$, four quadrics in \mathbb{P}^{7}
- $Z=Q_{1} \cap Q_{2} \cap Q_{3} \cap Q_{4} \subset \mathbb{P}^{7} C Y$ 3fold, $h^{1,1}(Z)=1$
- X is a moduli space of spinor sheaves on quadrics in \mathbb{P}^{7}, restricted to Z
- No universal sheaf on $X \times Z$
- Universal α-twisted spinor sheaf \mathcal{E} on $X \times Z, \alpha \in \operatorname{Br}(X)$ Addington 0904.1764
- $\mathcal{Q} \rightarrow \mathbb{P}^{3}$ bundle of quadric hypersurfaces in \mathbb{P}^{7}
- \mathcal{B}_{0} sheaf of even Clifford algebras on \mathbb{P}^{3} Kuznetsov 0510670

$$
\begin{gathered}
\mathcal{B}_{0}=\mathcal{O}_{\mathbb{P}^{3}} \oplus\left(\Lambda^{2}(V) \otimes \mathcal{O}_{\mathbb{P}^{3}}(-1)\right) \oplus\left(\Lambda^{4}(V) \otimes \mathcal{O}_{\mathbb{P}^{3}}(-2)\right) \oplus \\
\left(\Lambda^{6}(V) \otimes \mathcal{O}_{\mathbb{P}^{3}}(-3)\right) \oplus\left(\Lambda^{8}(V) \otimes \mathcal{O}_{\mathbb{P}^{3}}(-4)\right)
\end{gathered}
$$

- X is a moduli space of \mathcal{B}_{0}-modules supported on points of \mathbb{P}^{3}
- Points of any small resolution of Y represented by \mathcal{B}_{0}-modules supported on points $p \in \mathbb{P}^{3}$
- In other words, a $\mathcal{B}_{0} \otimes \mathcal{O}_{p}=\mathrm{Cl}^{0}(A(p))$ representation
- Cl_{k} (complex) Clifford algebra of nondegenerate quadratic form in k variables

$$
\mathrm{Cl}(V, Q)=\bigotimes V /\left(v_{1} v_{2}+v_{2} v_{1}=2 Q\left(v_{1}, v_{2}\right) \cdot 1\right)
$$

- M_{r} algebra of $r \times r$ matrices
- $p \in \mathbb{P}^{3}-S$:
- $\mathcal{B}_{0} \otimes \mathcal{O}_{p} \simeq \mathrm{Cl}_{8}^{0} \simeq \mathrm{Cl}_{7} \simeq M_{8} \times M_{8}$
- Two 8-dimensional reps, corresponding to two points of X over p
- p smooth point of S :
- $\mathcal{B}_{0} \otimes \mathcal{O}_{p} \simeq \mathrm{Cl}_{6} \otimes \mathrm{Cl}(\mathbf{C}, 0) \simeq M_{8} \otimes \mathbb{C}[\epsilon] / \epsilon^{2}$
- Unique 8-d rep, corresponding to unique point of X over p

\mathcal{B}_{0}-modules and points of small resolutions

- p node of S
- W 2-dimensional complex vector space
- $\mathcal{B}_{0} \otimes \mathcal{O}_{p_{i}} \simeq \mathrm{Cl}_{5} \otimes \mathrm{Cl}(W, 0)$
- $\mathrm{Cl}_{5} \simeq M_{4} \times M_{4}$
- 4-dimensional reps S^{\prime} and $S^{\prime \prime}$ of Cl_{5}
- For $[w] \in \mathrm{P}(W) \simeq \mathbb{P}^{1}$ have 2-dim'l rep $R_{[w]}:=w \wedge^{*} W$ of $\Lambda^{*} W$
- Get two \mathbb{P}^{1} 's worth of 8-d reps of $\mathcal{B}_{0} \otimes \mathcal{O}_{p_{i}}: S^{\prime} \otimes R_{[w]}, S^{\prime \prime} \otimes R_{[w]}$ of \mathcal{B}_{0}
- Identified with the points of the two small resolutions of p_{i}

$$
D^{b}(X, \alpha) \stackrel{\text { Addington }}{=} D^{b}(Z) \stackrel{\text { Kuznetsov }}{=} D^{b}\left(\mathbb{P}^{3}, \mathcal{B}_{0}\right)
$$

- Mirror $Z^{\circ}=\tilde{Z}_{\psi}^{\circ} / G,|G|<\infty$ of Z has $h^{2,1}(Z)=1$
$x_{0}^{2}+x_{1}^{2}=2 \psi x_{0} x_{1}, x_{2}^{2}+x_{3}^{2}=2 \psi x_{2} x_{3}, x_{4}^{2}+x_{5}^{2}=2 \psi x_{4} x_{5}, x_{6}^{2}+x_{7}^{2}=2 \psi x_{6} x_{7}$
- Two points of maximal unipotent monodromy
- Large complex structure limit $\psi=\infty$ has fundamental period

$$
\varpi(\psi)=\sum_{n=0}^{\infty} \frac{((2 n)!)^{4}}{(n!)^{8}} \psi^{-8 n}
$$

and GW invariants of Z found by Picard-Fuchs system, mirror symmetry, holomorphic anomaly, conifold gap condition...

- Picard-Fuchs near MUM point at $\psi=0$ used in calculations
- Together with the mirror of the smooth octic double solid Clemens this determines enumerative invariants
- What is the B-model computing?

Conjecture

- Let \mathcal{S} be the set of all small resolutions of $Y,|\mathcal{S}|=2^{84}$
- $X^{\text {smooth }}=X^{\text {smooth }}$ for any $X, X^{\prime} \in \mathcal{S}$
- $\Gamma=\Gamma_{X X^{\prime}} \subset X \times X^{\prime}$ graph closure
- $\psi_{X X^{\prime}}: D^{b}(X) \rightarrow D^{b}\left(X^{\prime}\right)$ equivalence from FM with kernel \mathcal{O}_{Γ}

$$
\psi_{X X^{\prime}}(F)=R \pi_{X^{\prime} *}\left(L \pi_{X}^{*}(F) \stackrel{L}{\otimes} \mathcal{O}_{\Gamma}\right)
$$

- $\mathrm{Coh}_{\leq 1}(X)$ coherent sheaves on X of dimension at most 1
- Conjecture

B-model computes Gopakumar-Vafa invariants of

$$
\left(\bigcup_{X \in \mathcal{S}} \operatorname{Coh}_{\leq 1}(X)\right) / E^{\bullet} \sim \psi_{X X^{\prime}}\left(E^{\bullet}\right), E^{\bullet} \in D^{b}(X)
$$

- Conjecture is more general

General setting

- \mathbb{P}^{3} can be replaced with a more general Fano threefold B of even index
- A can be replaced with a symmetric matrix whose entries are sections of line bundles on B
- For $B=\mathbb{P}^{3}$, let $\vec{d}=\left(d_{1}, \ldots, d_{k}\right), \sum d_{i}=8$, all d_{i} have same parity
- A symmetric matrix, $A_{i j} \in H^{0}\left(\mathbb{P}^{3}, \mathcal{O}\left(\left(d_{i}+d_{j}\right) / 2\right)\right)$
- Main example: $\vec{d}=1^{8}$
- Y double cover of \mathbb{P}^{3} branched over $\operatorname{det}(A)=0, X$ small resolution

Outline

(2) Torsion

3 Determinantal octic double solid

4 Brauer group and twisted sheaves

- X compact manifold
- Flat B-field $B \in H^{2}(X, U(1))$

$$
\begin{aligned}
& 0 \rightarrow \mathbb{Z} \rightarrow \mathbb{R} \rightarrow U(1) \rightarrow 0 \\
& \\
& 0 \rightarrow H^{2}(X, \mathbb{R}) / H^{2}(X, \mathbb{Z}) \rightarrow H^{2}(X, U(1)) \rightarrow H^{3}(X, \mathbb{Z}) \rightarrow H^{3}(X, \mathbb{R}) \\
& \searrow \\
& H^{3}(X, \mathbb{Z})_{\text {tors }}
\end{aligned}
$$

- c : $H^{2}(X, U(1)) \rightarrow H^{3}(X, \mathbb{Z})_{\text {tors }}$
- $\gamma=c(B)$ is a characteristic class of B

Kähler Moduli space

- X Calabi-Yau threefold
- (Complexified) Kähler moduli space

$$
\mathcal{K}=\left\{B+i J \mid B \in H^{2}(X, \mathbb{R}) / H^{2}(X, \mathbb{Z}), J \text { Kahler, } J \gg 0\right\}
$$

- Naturally generalizes to connected components in the presence of torsion.
- Fix a characteristic class $\gamma \in H^{3}(X, \mathbb{Z})_{\text {tors }}$

$$
\mathcal{K}_{\gamma}:=\left\{B+i J \mid B \in H^{2}(X, U(1)), c(B)=\gamma, J \text { Kahler, } J \gg 0\right\}
$$

- All isomorphic to $\left(\Delta^{*}\right)^{b_{2}(X)}$
- Multiple large radius limits, different topological string partition functions
- To determine a mirror, a characteristic class $\gamma \in H^{3}(X, \mathbb{Z})_{\text {tors }}$ must be fixed in addition to X
- The $\psi=0$ MUM point of the mirror of the $(2,2,2,2)$ complete intersection is mirror to X and B-fields with nontrivial characteristic class
- Physicists refer to B-fields with nonzero characteristic class as a fractional B-field

Gromov-Witten theory

- Usual GW expansion variables

$$
q^{\beta}=\exp \left(2 \pi i \int_{\beta} B+i J\right), \quad \beta \in H_{2}(X, \mathbb{Z})
$$

- Have cap product pairing

$$
H^{2}(X, U(1)) \times H_{2}(X, \mathbb{Z}) \rightarrow U(1)
$$

- On any \mathcal{K}_{γ} have expansion variables

$$
\begin{gathered}
q_{\gamma}^{\beta}=(B \cap \beta) \exp \left(-2 \pi \int_{\beta} J\right) \\
F_{\gamma}=\sum N_{\beta}^{g} \lambda^{2 g-2} q_{\gamma}^{\beta}, \quad N_{\beta}^{g} \text { GW invariants }
\end{gathered}
$$

- See also Aspinwall-Gross-Morrison hep-th/9503208
- $\mathcal{K}_{\gamma} \simeq \mathcal{K}$, not canonically.
- Up to choices, can relate q_{γ}^{β} to usual expansion variables
- For exposition, assume $H^{3}(X, \mathbb{Z})_{\text {tors }} \simeq \mathbb{Z}_{k}$
- Choose B_{0} with $c\left(B_{0}\right)=\gamma$ and $k B_{0}=0\left(k^{b_{2}(X)}\right.$ choices $)$

$$
\begin{gathered}
c^{-1}(\gamma)=\left\{B_{0}+B \mid B \in H^{2}(X, \mathbb{R}) / H^{2}(X, \mathbb{Z})\right\} \\
q_{\gamma}^{\beta}=\left(B_{0} \cap \beta\right) q^{\beta}
\end{gathered}
$$

- Since $k B_{0}=0, B_{0} \cap \beta$ kth root of $1 \in U(1)$

$$
F_{\gamma}=\sum N_{\beta}^{g}\left(B_{0} \cap \beta\right) \lambda^{2 g-2} q^{\beta}
$$

- This structure facilitates the determination of the F_{γ} by B-model techniques
- $H_{2}(X, \mathbb{Z})_{\text {tors }} \simeq H^{3}(X, \mathbb{Z})_{\text {tors }}$ universal coefficient theorem
- $H_{2}(X, \mathbb{Z}) \simeq \mathbb{Z}^{b_{2}(X)} \oplus H_{2}(X, \mathbb{Z})_{\text {tors }}$, noncanonical isomorphism
- Choice of splitting $\left(H_{2}(X, \mathbb{Z})_{\text {tors }} \simeq \mathbb{Z}_{k}\right)$

$$
H_{2}(X, \mathbb{Z}) \rightarrow \mu_{k} \simeq \mathbb{Z}_{k}, \quad \beta \mapsto B_{0} \cap \beta
$$

- $\operatorname{deg}(\beta) \in \mathbb{Z}^{b_{2}(X)}$ degree
- $t(\beta) \in \mathbb{Z}_{k}$ torsion class (M-theory \mathbb{Z}_{k} charge)

Organization of invariants

- For $\beta \in H_{2}(X, \mathbb{Z})$ have Gopakumar-Vafa invariants $n_{\beta}^{g} \in \mathbb{Z}$
- Sometimes write $n_{\operatorname{deg}(\beta), t(\beta)}^{g}$ in place of n_{β}^{g}
- For all $\gamma \in H^{3}(X, \mathbb{Z})_{\text {tors }}$

$$
F_{\gamma}=\sum_{\beta} \frac{n_{\beta}^{g}}{m}\left(2 \sin \left(\frac{m \lambda}{2}\right)\right)^{2 g-2} q_{\gamma}^{m \beta}
$$

- Have k times as many GV invariants as in the torsion-free case
- Have k times as many generating functions to compensate, along with k different mirrors

Outline

(3) Determinantal octic double solid

4 Brauer group and twisted sheaves

- $X \rightarrow Y$ small resolution of determinantal octic double solid Y
- $\pi: X \rightarrow \mathbb{P}^{3}$
- $H \in H^{2}\left(\mathbb{P}^{3}, \mathbb{Z}\right)$ hyperplane class
- $H^{2}(X, \mathbb{Z})$ generated by $\pi^{*}(H)$
- $H_{2}(X, \mathbb{Z}) \simeq \mathbb{Z} \oplus \mathbb{Z}_{2}$
- $\beta \in H_{2}(X, \mathbb{Z}), d=d(\beta)=\pi^{*}(H) \cap \beta \in \mathbb{Z}$, torsion class $j \in \mathbb{Z}_{2}$
- $\left[C_{i}\right] \in H_{2}(X, \mathbb{Z})$ nontrivial 2-torsion class $(d=0, j=1)$
- $\pi^{-1}($ line $)=\pi^{*}\left(H^{2}\right)$ has class $d=2, j=1, \pi: X \rightarrow \mathbb{P}^{3}$

$$
d=\pi^{*}(H) \cdot \pi^{*}\left(H^{2}\right)=\pi^{*}\left(H^{3}\right)=2
$$

- Degenerate Y to Y^{\prime}, requiring lower right 3×3 block of A vanishes

$$
A=\left(\begin{array}{cc}
B_{5 \times 5} & C^{\mathrm{t}} \\
C & 0_{3 \times 3}
\end{array}\right)
$$

- Nodes of Y^{\prime}
- 84 nodes p_{i} where $\operatorname{rank}\left(A\left(p_{i}\right)\right)=6$
- nodes q_{j} where $\operatorname{rank}\left(C\left(q_{j}\right)\right)=2$
- Y^{\prime} has an explicit projective small resolution X^{\prime} : a complete intersection in $\mathbb{P}^{3} \times \mathbb{P}^{4}$

$$
\sum_{j=0}^{4} C_{i j}(x) y_{j}=0, \sum_{i, j=0}^{4} B_{i j} y_{i} y_{j}=0
$$

- $H_{2}\left(X^{\prime}, \mathbb{Z}\right) \simeq \mathbb{Z}^{2}$

$$
\sum_{j=0}^{4} c_{i j}(x) y_{j}=0, \sum_{i, j=0}^{4} B_{i j} y_{i} y_{j}=0
$$

- Exceptional curves over p_{i} are lines in \mathbb{P}^{4}; exceptional curves over q_{j} are conics in \mathbb{P}^{4}
- C_{1} class of exceptional curve over $p_{i} ; C_{2}$ class of exceptional curve over q_{j}
- $\left[C_{1}\right]=(0,1),\left[C_{2}\right]=(0,2)$
- $D:=\left[\pi^{\prime-1}\right.$ (line) $]=\pi_{1}^{*}\left(H_{1}^{2}\right)$
- D has class $\left(\left(\pi_{1}^{*}\left(H_{1}\right) \cdot D\right),\left(\pi_{2}^{*}\left(H_{2}\right) \cdot D\right)\right)=(2,7)$

$$
\left(H_{2} \cdot D\right)_{X^{\prime}}=\left(H_{2} H_{1}^{2} \cdot\left(H_{1}+H_{2}\right)^{3}\left(H_{1}+2 H_{2}\right)\right)_{\mathbb{P}^{3} \times \mathbb{P}^{4}}=7
$$

- X from X^{\prime} by contracting C_{2} curves to Y^{\prime} and smoothing
- $H_{2}(X, \mathbb{Z}) \simeq \mathbb{Z} \oplus \mathbb{Z}_{2}$
- $\left[C_{1}\right] \in H_{2}(X, \mathbb{Z})$ nontrivial 2-torsion class $(d=0, j=1)$
- π^{-1} (line) has class $d=2, j=1$.

Computing GV invariants

- GV invariants denoted $n_{d, j}^{g}$
- From conifold transition $X \rightarrow Y_{t}$ Ruan

$$
n_{d, 0}^{g}(X)+n_{d, 1}^{g}(X)=n_{d}^{g}\left(Y_{t}\right)
$$

- Y_{t} smooth octic double solid, GV invariants computed long ago
- Determinantal double solid provides torsion refinement of these GV invariants

$n_{d, 0}^{g}$	$d=1$	2	3	4
$g=0$	14752	64415616	711860273440	11596528004344320
1	0	20160	10732175296	902646044328864
2	0	504	-8275872	6249833130944
3	0	0	-88512	-87429839184
4	0	0	0	198065872
5	0	0	0	157306
6	0	0	0	1632
7	0	0	0	24

$n_{d, 1}^{g}$	$\beta=1$	2	3	4
$g=0$	14752	64419296	711860273440	11596528020448992
1	0	21152	10732175296	902646048376992
2	0	360	-8275872	6249834146800
3	0	6	-88512	-87429664640
4	0	0	0	198149928
5	0	0	0	144144
6	0	0	0	2520
7	0	0	0	0

- $n_{1,0}^{0}=n_{1,1}^{0}=14752$
- $n_{2,0}^{3}=0 ; n_{2,1}^{3}=6 ; n_{2,0}^{2}=504 ; n_{2,1}^{2}=360$
- $n_{3,0}^{3}=n_{3,1}^{3}=14752 \cdot(-6)=-88512$
- $n_{2 d, d}^{d^{2}+d+1}=(-1)^{\left(d^{2}+3 d+6\right) / 2}\left(2 d^{2}+6 d+4\right), n_{2 d, d+1}^{d^{2}+d+1}=0(d \geq 2)$
- $n_{2 d, d+1}^{d^{2}+d+1}=252\left(d^{2}+3 d\right)(d \geq 2)$
- $n_{2 d+1,0}^{d^{2}+2 d}=n_{2 d+1,1}^{d^{2}+2 d}=(-1)^{\left(d^{2}+3 d+2\right) / 2} 14752\left(d^{2}+3 d+2\right)(d \geq 2)$
- $n_{2 d, d}^{d^{2}+d}=(-1)^{\left(d^{2}+3 d+8\right) / 2}\left(4 d^{4}+16 d^{3}-172 d^{2}-568 d\right)(d \geq 2)$

$n_{d, 0}^{g}$	$d=1$	2	3	4
$g=0$	14752	64415616	711860273440	11596528004344320
1	0	20160	10732175296	902646044328864
2	0	504	-8275872	6249833130944
3	0	0	-88512	-87429839184
4	0	0	0	198065872
5	0	0	0	157306
6	0	0	0	1632
7	0	0	0	24

$n_{\beta, 1}^{g}$	$\beta=1$	2	3	4
$g=0$	14752	64419296	711860273440	11596528020448992
1	0	21152	10732175296	902646048376992
2	0	360	-8275872	6249834146800
3	0	6	-88512	-87429664640
4	0	0	0	198149928
5	0	0	0	144144
6	0	0	0	2520
7	0	0	0	0

- $L \subset \mathbb{P}^{3}$ meeting S in 4 points of tangency.
- 14,752 such lines H. Schubert, 1879.0001
- $\pi^{-1}(L)=L_{1} \cup L_{2} \subset Y$, rational curves meeting at the 4 points over the tangencies
- Identify with $L_{i} \subset X$
- $d\left(L_{i}\right)=\pi^{*}(H) \cdot L_{i}=H \cdot \pi_{*}\left(L_{i}\right)=1$
- L_{2} has class $(1, j)$ for some $j \in \mathbb{Z}_{2}$
- $L_{1}-L_{2}=\left(L_{1}+L_{2}\right)-2 L_{2}$ has class $(2,1)-2(1, j)=(0,1)$
- L_{1}, L_{2} have different torsion classes

Degree 1

- $C \subset X, d=1=\pi^{*}(H) \cdot C=H \cdot \pi_{*}(C)$
- $\pi(C) \subset \mathbb{P}^{3}$ line L
- $\pi^{-1}(L) \subset X$ curve of degree 2 containing C
- $\pi^{-1}(L)$ has two degree 1 components, hence L 4-tangent line, $C=L_{1}$ (say), $g=0$
- 14,752 such lines.
- If L_{1} has torsion class j, then L_{2} has torsion class $j+1$.

$$
n_{1, j}^{g}= \begin{cases}14752 & g=0 \\ 0 & g>0\end{cases}
$$

- Remark. The isomorphism $H_{2}(X, \mathbb{Z}) \simeq \mathbb{Z} \oplus \mathbb{Z}_{2}$ not canonical, so no intrinsic meaning for torsion class of the L_{i}
- $\mathbb{Z} \oplus \mathbb{Z}_{2}$ has automorphism $(d, j) \mapsto(d, d+j)$
- j intrinsically defined for even d
- $\beta \in H^{2}(X, \mathbb{Z})$
- $g(\beta)$ maximal (arithmetic) genus of curve of class $g(\beta)$ (Castelnuovo bound)
- \mathcal{M}_{β} Chow variety of curves of class β
- $\mathcal{M}_{\beta}^{\prime} \subset \mathcal{M}_{\beta}$ parametrizing curves of arithmetic genus $g(\beta)$
- $n_{\beta}^{g(\beta)}$ Behrend-weighted Euler characteristic of $\mathcal{M}_{\beta}^{\prime}$ Gopakumar-Vafa; K-Klemm-Vafa
- $\mathcal{C} \rightarrow \mathcal{M}_{\beta}^{\prime}$ universal curve of (arithmetic) genus $g(\beta)$
- Suppose $\mathcal{C}, \mathcal{M}_{\beta}^{\prime}$ smooth (+...)

$$
n_{\beta}^{g(\beta)-1}=(-1)^{\operatorname{dim}(\mathcal{C})}\left(\chi_{\operatorname{top}}(\mathcal{C})+(2 g(\beta)-2) \chi_{\operatorname{top}}\left(\mathcal{M}_{\beta}^{\prime}\right)\right)
$$

- Proven using Maulik-Toda definition of GV invariants 1610.07303 and the decomposition theorem for perverse sheaves L. Zhao

Degree 2

- $C \subset X, d=2$
- $\pi_{*}(C)$ degree 2 cycle in \mathbb{P}^{3}
- Either
- $\pi(C)$ is a line L, C degree 2 over L with 8 branch points $(g(C)=3)$
- $\pi(C)$ is a smooth conic $(g(C)=0)$
- Case 1: class of C is $(2,1)$
- Moduli space of such curves is $G(2,4)$
- Second case does not contribute to genus 3 invariants
- $n_{2,1}^{3}=\chi(G(2,4))=6$
- $n_{2,0}^{3}=0$
- Generalizes to double covers of plane curves of degree $d \geq 2$

$$
n_{2 d, d}^{g}=\begin{array}{ll}
(-1)^{\left(d^{2}+3 d\right) / 2+1}\left(2 d^{2}+6 d+4\right) & g=d^{2}+d+1 \\
0 & g>d^{2}+d+1
\end{array}
$$

- $d=2: n_{4,0}^{7}=24$ (double cover of plane conic branched at $2 \cdot 8=16$ points has genus 7)
- $\beta=(2,1)$
- $\mathcal{M}_{2,1}=G(2,4)$
- $\mathcal{C} \xrightarrow{\left(p \in \pi^{-1}(L)\right) \mapsto p} X$
- Fiber over $p: \mathbb{P}^{2}$ of lines in \mathbb{P}^{3} through $\pi(p)$
- $\chi_{\text {top }}(\mathcal{C})=3 \chi_{\text {top }}(X)=-384$
- $n_{2,1}^{2}=-(-384+4 \cdot 6)=360$
- Class $(2,0)$ for $g>0$: necessarily 2-1 $\pi: C \rightarrow L$
- $\pi^{-1}(L)=C+C_{i}$
- L passes through p_{i}
- Both small resolutions contribute
- $n_{2,0}^{2}=2 \cdot 84 \cdot 3=504$

Outline

(3) Determinantal octic double solid

4 Brauer group and twisted sheaves

- $\operatorname{Br}(X)$ generated by projective bundles or Azumaya algebras
- $P \rightarrow X$ rank $r-1$ projective bundle
- Gluing of trivializations determines class in $H^{1}(X, \operatorname{PGL}(r))$, hence $H^{2}\left(X, \mathcal{O}_{X}^{*}\right)_{\text {tors }}$ via

$$
\begin{gathered}
0 \rightarrow \mu_{r} \rightarrow \mathrm{GL}(r) \rightarrow \mathrm{PGL}(r) \rightarrow 0 \\
H^{1}(X, \operatorname{PGL}(r)) \rightarrow H^{2}\left(X, \mu_{r}\right) \rightarrow H^{2}\left(X, \mathcal{O}_{X}^{*}\right)
\end{gathered}
$$

- $\operatorname{Br}(X) \simeq H^{2}\left(X, \mathcal{O}_{X}^{*}\right)_{\text {tors }}$ Gabber-de Jong
- For a CY 3fold, $\operatorname{Br}(X) \simeq H^{3}(X, \mathbb{Z})_{\text {tors }}$ via

$$
0 \rightarrow \mathbb{Z} \rightarrow \mathcal{O}_{X} \rightarrow \mathcal{O}_{X}^{*} \rightarrow 0, \quad H^{2}\left(X, \mathcal{O}_{X}^{*}\right) \hookrightarrow H^{3}(X, \mathbb{Z})
$$

- Represent $\alpha \in H^{2}\left(X, \mathcal{O}_{X}^{*}\right)$ by cocycle $c_{\eta \theta \iota} \in Z^{2}\left(\left\{U_{\eta}\right\}, \mathcal{O}_{X}^{*}\right)$
- Twisted sheaf determined by sheaves F_{η} on U_{η} and isomorphisms

$$
\phi_{\eta \theta}: F_{\theta}\left|U_{\eta} \cap U_{\theta} \simeq F_{\eta}\right| U_{\eta} \cap U_{\theta}
$$

satifying $\phi_{\iota \eta} \circ \phi_{\eta \theta} \circ \phi_{\theta_{\iota}}=c_{\eta \theta_{\iota}}$

- Derived category $D^{b}(X, \alpha)$ independent of choice of cocycle up to equivalence
- $\alpha \in \operatorname{Br}(X)$ determines derived category of twisted sheaves $D^{b}(X, \alpha)$
- Conjecturally $D^{b}(X)$ admits Bridgeland stability conditions (proven in many cases)
- Space of stability conditions "extended Kähler moduli space"
- Kähler moduli is a slice of this

$$
Z\left(E^{\bullet}\right)=-\int_{X} \exp (-2 \pi i)(B+i J) \operatorname{ch}\left(E^{\bullet}\right) \hat{\Gamma}(X)
$$

- $\operatorname{Br}(X) \simeq H^{3}(X, \mathbb{Z})_{\text {tors }}$ suggests \mathcal{K}_{α} parametrizes Bridgeland stability conditions on $D^{b}(X, \alpha)$
- $H^{2}\left(C, \mathcal{O}_{C}^{*}\right)=0$ for C a curve
- Twisting can be ignored in DT computations
- $\operatorname{Br}(X) \simeq H^{3}(X, \mathbb{Z})_{\text {tors }}$ suggests \mathcal{K}_{α} parametrizes Bridgeland stability conditions on $D^{b}(X, \alpha)$
- Torsion provides additional structure which can be exploited in many ways
- A feature, not a bug
- GV invariants of non-Kähler resolutions and their flops can be computed by B-model techniques
- A general description in terms of noncommutative resolutions is anticipated

THANK YOU!

